Elsőfokú egyenletek megoldása

Az elsőfokú (egyismeretlenes) egyenletben olyan kifejezések szerepelnek, amiben az ismeretlen, amit leggyakrabban x-szel jelölünk, az első hatványon szerepel ( azaz így "simán", nem szerepel benne pl. x2). 

Az egyenlet állhat x-es tagokból és számokból (konstansokból). Például: 6x + 14 = 18x - 8. Az egyenletet legtöbbször mérlegelvvel oldjuk meg, mindkét oldalát ugyanúgy változtatjuk.

Az a cél, hogy külön oldalra kerüljenek az x-es tagok, és külön oldalra a számok. Ha sikerült elérnünk ezt az alakot, akkor az egyenlet mindkét oldalát elosztjuk x együtthatójával (azzal a számmal, amivel meg van szorozva), így meg is kapjuk x értékét. 

első fokú egyenlet

Ha x együtthatója törtszám, akkor plusz egy lépést be kell iktatni: be kell szorozni mindkét oldalt az együttható nevezőjével. Utána pedig mindkét oldalt lehet osztani x (így már egész szám) együtthatójával.

További példák elsőfokú egyenlet megoldására

1. Feladat: Megoldjuk a 3x + 14 = x - 6 egyenletet

3 x plus 14 space equals space x minus 6    divided by negative x    (x-et elveszünk, hogy csak a baloldalon maradjon x-es tag)

2 x plus 14 equals negative 6  divided by negative 14         (elveszünk 14-et, hogy az x-es tag mellől "eltűnjön" a szám)

2 x equals negative 20        divided by colon 2               (már csak az x-es tag együtthatójával kell osztani, hogy megkapjuk x-et)

x equals negative 10

2. Feladat: Oldjuk meg a következő egyenletet is!

5 over 2 x plus 3 equals 11 space space divided by negative 3        (elveszünk 3-at mindkét oldalról, hogy a baloldalon csak az x-es tag maradjon.)

5 over 2 x equals 8 space space space divided by times 2                  (szorzunk a tört nevezőjével, hogy x együtthatója egész szám legyen)

5 x equals 16 space space space space space divided by space colon space 5               (osztunk x együtthatójával)

x equals 16 over 5    

A következő Matek Oázis videókkal tanulhatsz az elsőfokú egyenletek megoldásáról

Egyenletek
Bevezetés (5. modul)
Mérlegelv - haladó feladatok
Egyenletek grafikus megoldása
Gyakorlás Egyenletek
Egyenlőtlenségek 1. (Elsőfokú)
Gyakorlás Abszolútértékes egyenletek
1. feladatsor
Magasabbfokú egyenletek
V. További trigonometrikus egyenletek
Trigonometrikus egyenletek
Trigonometrikus egyenletek - gyakorlás
Trigonometrikus egyenlőtlenségek
1. feladatsor megoldásai
2. feladatsor megoldásai
Egyenletek grafikus megoldása
Másodfokú egyenletek
Másodfokúra visszavezethető egyenletek
Exponenciális egyenletek
Első- és másodfokú egyenlőtlenségek
Egyenletek, egyenlőtlenségek
Logaritmikus egyenletek
Trigonometrikus egyenletek
Egyenletek, egyenlőtlenségek
Legegyszerűbb trigonometrikus egyenletek
Egyszerűbb egyenletek megoldása (6. o.)
2. Racionális és irracionális számok...

2. Racionális és irracionális számok...

2. tétel: Racionális és irracionális számok. Műveletek a racionális és irracionális számok halmazán. Közönséges törtek és tizedes törtek. Halmazok számossága. Tanuld meg a racionális és irracionális számok fogalmát, a műveletek tulajdonságait. Segítünk megtanulni, hogyan bizonyítsd be, hogy a gyök 2 irracionális szám, és mit kell elmondanod a tizedestörtekről, törtekről. Mik azok a racionális és irracionális számok? Racionális számoknak azokat a számokat nevezzük, amelyek felírhatók két egész számhányadosaként. Az irracionális számok azok a számok, amelyek nem írhatók fel két egész szám hányadosaként. A valós számok halmaza nem más, mint ennek a két diszjunkt halmaznak az uniója. A valós számok halmaza és a valós számegyenes pontjai közt kölcsönösen egyértelmű hozzárendelés létezik. Ha például a nulla pontnál egységnyi oldalhosszúságú négyzetet szerkesztünk a 0-tól 1-ig tartó szakasz fölé, akkor ennek a négyzetnek az átlója, ami gyök2 hosszúságú, kijelöli a számegyenesen négyzetgyök 2 helyét. Tétel: 2 négyzetgyöke irracionális szám. A tételt indirekt bizonyítási módszerrel bizonyítjuk. Műveletek a racionális és irracionális számok halmazán. A racionális számok halmaza zárt a négy alapműveletre nézve. Ez azt jelenti, hogy két racionális szám összege, különbsége, szorzata és hányadosa is racionális. Természetesen osztás esetén az osztó nem lehet nulla, a 0-val való osztást nem értelmezzük. Mivel a racionális számok esetén létezik közönséges tört alak, ezért elegendő ilyen alakra megnézni a műveleteket. Eredményként mindig racionális számot kapunk, hiszen a kapott tört számlálója is és nevezője is egész szám, mivel az egész számok halmaza is zárt a négy alapműveletre. Két közönséges törtet úgy szorzunk össze, hogy a számlálót a számlálóval, nevezőt pedig a nevezővel szorozzuk. A számláló és a nevező is egész szám lesz, tehát a szorzás eredményeként szintén racionális számot kapunk. Közönséges törttel pedig úgy osztunk, hogy a reciprokával szorzunk. Az előzőekhez hasonlóan most is racionális számot kapunk hányadosként. Milyen tulajdonságai vannak ezeknek a műveleteknek? Az összeadás és a szorzás művelete kommutatív, tehát összeadásnál a tagok, szorzás esetén a tényezők felcserélhetők. Ez a két művelet asszociatív is, tehát csoportosítva is elvégezhetjük őket. A szorzás művelete disztributív az összeadásra (és a kivonásra), tehát egy zárójeles összeg tagjait tagonként is beszorozhatjuk. Milyen tizedes törtek vannak? Melyek a racionális számok közülük? A véges tizedes törteket nagyon könnyű meghatározni két egész szám hányadosaként, hiszen az egészrészt és a törtrészt is fel tudjuk írni közönséges tört alakban. Természetesen így nem mindig kapjuk a legegyszerűbb alakot, azt akkor kapjuk meg, ha egyszerűsítünk a számláló és a nevező legnagyobb közös osztójával. A végtelen szakaszos tizedes törtek szintén átírhatók közönséges tört alakba. Ennek egyszerű, elemi módja is van, és végtelen mértani sorok összegképletének segítségével is meghatározható a közönséges tört alak. A végtelen nem szakaszos tizedes törtek irracionális számok. Vannak olyan irracionális számok, amelyeket kiemelt szerepük miatt betűvel is eljelöltek, ilyen például a vagy az . De irracionális szám az összes olyan egész számnak a négyzetgyöke is, amely nem négyzetszám. Az irracionális számok halmaza a 4 alapműveletre nézve nem zárt. Halmazok számossága. Végesnek mondjuk a halmazt, ha az elemszáma egy természetes számmal megadható. A racionális és az irracionális számok halmazának elemszáma nem adható meg egy természetes számmal, ezért ezek végtelen halmazok. A végtelen elemszámú halmazok esetében megkülönböztetünk megszámlálhatóan végtelen elemszámot és nem megszámlálhatóan végtelen elemszámot. Megszámlálhatóan végtelen az a halmaz, amelynek elemeit valamilyen módon sorba tudjuk rendezni. (Meg tudunk adni egy olyan eljárás, amelyet követve a sorba rendezésnél egyetlen elem sem maradna ki) A racionális számok halmaza megszámlálhatóan végtelen. A Cantor-féle átlós eljárással könnyen sorba rendezhetjük őket. Egy táblázat első sorában a számlálókat, első oszlopában pedig a nevezőket helyezzük el. Előállítjuk az összes lehetséges módon a közönséges törtet. Biztosan szerepelni fog a táblázatban minden közönséges tört, illetve az átlós bejárást követve a sorba rendezés is adódik. Az irracionális számok halmazának elemei nem sorba rendezhetők, nem megszámlálhatóan végtelen ez a halmaz. Az ilyen halmazt kontinuum számosságúnak nevezzük. Ilyen a valós számok halmaza is. A racionális számok és irracionális számok felhasználása. A racionális számok és irracionális számokat már Pitagorasz korában is használták. Említettem, hogy a valós számegyenesen geometriai ismereteket felhasználva ekkor már ismerték helyüket. Építészeti megoldásokban trigonometrikus alakban kifejezett irracionális számokkal is bőven találkozhatunk. De racionális és irracionális számokat kaphatunk másodfokú, trigonometrikus, exponenciális és logaritmusos egyenletek megoldásakor is. Irracionális számok nélkül, pontosan a pi nélkül a kör területéről és kerületéről, forgástestek térfogatáról sem tudnánk beszélni.

20. A kör és a parabola

20. A kör és a parabola

20. tétel: A kör és a parabola elemi úton és a koordinátasíkon. Kör és egyenes, parabola és egyenes kölcsönös helyzete. Másodfokú egyenlőtlenségek grafikus megoldása. Megmutatjuk a teljes kidolgozott tételt, úgy, ahogyan a vizsgán pl. el lehet mondani. A videóban kék színnel írtuk azt, amit mindenképp javaslunk, hogy te is írd fel a táblára a vizsgán. Nézzük tehát a tételt. Feleletemben a kört és a parabolát mutatom be elemi úton és a koordináta síkon. Kitérek a kör és egyenes, valamint a parabola és egyenes kölcsönös helyzetére is. Végül másodfokú egyenletek grafikus megoldásáról fogok beszélni és kitérek néhány matematikatörténeti vonatkozásra is. A kör az elemi és a koordinátageomatriában. Definíció: A kör azon pontok halmaza a síkon, amelyek egy adott ponttól egyenlő távolságra helyezkednek el. Az adott pontot a kör középpontjának, az adott távolságot pedig a kör sugarának hívjuk. A kört egyértelműen meghatározza a síkon a középpontja és a sugara. Kimondok egy körről szóló tételt: A K(u,v) középpontú, r sugarú kör egyenlete (x-u)2+(y-v)2=r2. A kör egyenlete kétismeretlenes másodfokú egyenlet, ami átírva x2+y2-2ux-2vy+u2+v2-r2=0 alakú. Ezt egyszerűbben jelölve úgy is leírhatjuk, hogy x2+y2+Ax+By+C=0 Az ilyen alakban felírt kétismeretlenes másodfokú egyenlet akkor köregyenlet, ha A2+B2-4C pozitív. Matematikatörténet: Descartes- i vonatkozásokat érdemes itt elmesélni. Mit kell tudni a paraboláról? Definíciója: A parabola azon pontok halmaza a síkon, amelyek a sík egy adott egyenesétől és egy adott, az egyenesre nem illeszkedő pontjától ugyanolyan távolságra vannak. Az adott egyenest a parabola vezéregyenesnek, az adott pontot a parabola fókuszpontjának hívjuk. A vezéregyenes és a fókuszpont távolságát paraméternek hívjuk, és p-vel jelöljük. Minden parabolának van tengelye, ez egy fókuszpontra illeszkedő egyenes, ami merőleges a vezéregyenesre. A parabola tengelyen lévő pontját tengelypontnak nevezzük. Ez éppen a fókuszpontot és a vezéregyenest összekötő szakasz felezőpontja. Ebben a pontban van a parabola csúcsa. Tétel: az F(0;p/2) fókuszpontú y=-p/2 vezéregyenesű parabola egyenlete: y =1/2p *x2. A tételt a videóban bizonyítjuk. Ha a tengelypont nem az origóban van, hanem egy tetszőleges T(u;v) pontban, akkor a parabola egyenlete y=1/2p*(x-u)2+v alakban írható fel. Ha a parabola ellenkező irányban nyílik, akkor az 1/2p tört elé egy mínusz jelet kell írni. Minden másodfokú függvény grafikonja az y tengellyel párhuzamos tengelyű parabola, és minden y tengellyel párhuzamos tengelyű parabola valamelyik másodfokú függvény grafikonja. Alkalmazás pl. parabolaantenna. Elmondjuk a működésének lényegét. Kör és egyenes kölcsönös helyzete. Most áttérnék a kör és egyenes kölcsönös helyzetének a tárgyalására. A síkban egy körnek és egy egyenesnek kettő, egy vagy nulla közös pontja lehet. A közös pontokat, azaz a metszéspontokat a kör és egyenes egyenletéből álló egyenletrendszer segítségével adhatjuk meg. A helyzetük többféle lehet: lehet két közös metszéspont – ez egy szelőt határoz meg, ha egy közös pont van, akkor az egyenes érintője a körnek, ha nincs közös metszéspont, akkor az egyenes a körön kívül halad. Parabola és egyenes kölcsönös helyzete. Egy parabolának és egy egyenesnek is 2, 1 vagy 0 közös pontja lehet. Ebben az esetben is egy két egyenletből álló két ismeretlenes egyenletrendszert kell megoldani, hogy megkapjuk hány metszéspont van. Fontos kiemelni, hogy ha 1 metszéspont van, akkor nem feltétlenül érintője az egyenes a parabolának, mert ha az egyenes párhuzamos a parabola tengelyével, akkor ő egy átmetsző egyenes. A parabola érintője olyan egyenes, ami nem párhuzamos a parabola tengelyével, és egy metszéspontja van a parabolával. Ha tudjuk, hogy az egyenes az A(x0;y0) pontban érinti a parabolát, akkor meg tudjuk adni az érintő egyenes egyenletét deriválással. A deriváltfüggvényben az x=x0 helyen felvett helyettesítési érték adja meg az érintő meredekségét. A meredekség és az A pont ismeretében fel tudjuk írni az érintő iránytényezős egyenletét. Koordináta-geometria alkalmazható geometriai feladatok megoldásában. Másodfokú egyenlőtlenségek grafikus megoldása. A grafikus megoldásnál azt használjuk fel, hogy a másodfokú kifejezések képe parabola. Akárcsak a másodfokú egyenletnél, az egyenlőtlenségnél is nullára rendezünk, majd a bal oldalon álló kifejezés által meghatározott függvényt ábrázoljuk. Az egyenlőtlenség megoldása a grafikonról leolvasható, a videón részletezzük, hogyan. Néhány fizikai alkalmazást említünk a végén a csillagászat, a tükrök, mozgáspályák, építészet (statika) területéről. A tétel megtanulását is segítjük, hogy a szakzsargon ne okozzon gondot, könnyebben memorizálni tudd a definíciókat, tételeket.

6. A logaritmus ...

6. A logaritmus ...

6. tétel: A logaritmus fogalma és azonosságai. Az exponenciális és a logaritmusfüggvény. Az inverzfüggvény. A logaritmus fogalmát definiáljuk, majd a logaritmus műveletének azonosságairól, az exponenciális a és a logaritmusfüggvényről fogunk beszélni, végül a függvények inverzéről, azok képzéséről. A logaritmus definíciója, tulajdonságai. logab az a valós szám, amelyre az a-t emelve b -t kapjuk. a,b > 0, és a nem 1 (Részletesen indokoljuk, hogy miért kellenek ezek a kikötések) Másképpen úgy is mondhatjuk, hogy az logab = c és az ac = b ekvivalens állítások. A 10-es alapú logaritmust lg-vel, a természetes, vagyis e alapú logaritmust ln-nel jelöljük. Melyek a logaritmus azonosságai? A logaritmus műveletének azonosságai közül az első a szorzat logaritmusára vonatkozik: Szorzat logaritmusa a tényezők logaritmusának összege, visszafelé úgy is mondhatjuk, hogy azonos alapú logaritmusokat úgy adunk össze, hogy az argumendumokat összeszorozzuk. A tételt bizonyítjuk is a videón. További logaritmus azonosságok:. Hányados logaritmusa a számláló és a nevező logaritmusának különbsége. Ha pedig egy hatványnak vesszük a logaritmusát, akkor az nem más, mint az alap logaritmusának és a kitevőnek a szorzata. Ilyenkor a kitevőt, mint szorzótényezőt a logaritmus elé írjuk. Egy logaritmusos kifejezést más alapra is átírhatunk, az ismert összefüggés alapján. Ezt az azonosságot is bebizonyítjuk. Mit kell elmondani az exponenciális függvényekről? Exponenciális függvénynek nevezzük azt a valós számok halmazáról leképező függvényt, amely az x-hez az ax -et rendeli, ahol az a egy pozitív valós szám. Ha a függvény grafikonját szeretnénk megrajzolni, akkor két esetet kell megkülönböztetnünk az alaptól függően: Ha az alap 0 és 1 közötti, akkor az ax grafikonja szigorúan monoton csökken, ha pedig 1-nél nagyobb, akkor szigorúan monoton nő. Amennyiben az alap 1, a konstans 1 függvényről van szó. Mindkét esetben az értelmezési tartomány a valós számok halmaza, az értékkészlet pedig a pozitív valós számok halmaza. Közös tulajdonsága az ax típusú exponenciális függvényeknek, hogy grafikonjuk áthalad a ( 0; 1) ponton, hiszen bármely pozitív szám nulladik hatványa 1. Szélsőértékük nincs, felülről nem korlátosak, tehát nem korlátosak. Konvex függvények, zérushelyük nincs. Nem párosak és nem is páratlanok. Ezek a függvények a folytonosság miatt differenciálhatók és integrálhatók is. A logaritmus függvényeknek mi a közük az exponenciális függvényekhez? A logaritmus függvény a megfelelő exponenciális függvény inverze, a pozitív valós számok halmazáról képez le a valós számok halmazára, x-hez annak a alapú logaritmusát rendeli. Ha a logaritmus alapja 1-nél nagyobb szám, akkor a függvény szigorúan monoton nő, ha 0 és 1 közötti szám, akkor szigorúan monoton csökken. Negatív alapot és 1-es alapot nem értelmezünk logaritmus esetén. Értelmezési tartomány a pozitív számok halmaza, értékkészlete a valós számok halmaza. Zérushelyük van x=1-nél. Szélsőértékük nincs, sem alulról, sem felülről nem korlátosak. Ha az alap 1-nél nagyobb, a függvény konkáv, ha 0 és 1 közötti, akkor konvex. Nem párosak és nem is páratlanok. A függvények a folytonosság miatt differenciálhatók és integrálhatók is. Mit jelent az inverz függvény? Az f függvény inverze az f -1 ha az f értelmezési tartományának minden x elemére igaz, hogy f(x) eleme a f -1 értelmezési tartományának és f -1 (f(x)) = x. Ha az f és az f -1 függvények egymásnak inverzei, akkor az f értelmezési tartománya az f -1 értékkészlete, az f értékkészlete azf -1 értelmezési tartománya. Az f és az f -1 akkor grafikonjai tengelyesen tükrösek az y = x egyenletű egyenesre nézve. Megnézünk néhány példát az inverz függvényre a videón. Például inverze egymásnak a négyzetgyök függvény és az x2 függvény a megfelelő értelmezési tartomány mellett, vagy az f(x) = 3x és az 1/3 x is. Algebrai úton általában könnyen megkaphatjuk egy függvény inverzének hozzárendelési szabályát. Kitérünk még arra is, hogy az exponenciális és logaritmusos kifejezésekkel hol találkozhatunk, illetve az exponenciális, logaritmusos egyenletek megoldása milyen hétköznapi, v. műszaki problémák megoldásánál fontos. Említünk matematikatörténeti vonatkozásokat is.

7. Másodfokú egyenletek, egyenlőtlenségek

7. Másodfokú egyenletek, egyenlőtlenségek

7. tétel: Másodfokú egyenletek és egyenlőtlenségek. Másodfokúra visszavezethető egyenletek. Egyenletek ekvivalenciája, gyökvesztés, hamis gyök, ellenőrzés. Megmutatjuk a teljes kidolgozott tételt, úgy, ahogyan a vizsgán elmondhatod. Közben látni fogod, hogy mit érdemes a táblára írni. A videó második felében segítünk, hogy gyorsan meg is tudd tanulni a tételt. Mi az egyenlet, mit jelent az egyenlet alaphalmaza, értelmezési tartománya, illetve az egyenlet megoldásai? Ha két algebrai kifejezést egyenlőségjellel kapcsolunk össze, egyenletet kapunk. Az egyenlet leírásában egy vagy több változó szerepel. Az egyenlet megoldása során a változónak vagy változóknak azokat az értékeit keressük meg, amelyekre az egyenlet igaz logikai értéket vesz fel. Ez(ek) az egyenlet megoldásai vagy gyökei Minden egyenletnek van egy alaphalmaza, és ennek egy részhalmaza az értelmezési tartomány. Az értelmezési tartomány az alaphalmaznak azon legbővebb részhalmaza, amelyen az egyenletben szereplő összes algebrai kifejezés értelmezve van. Amennyiben nem adunk meg mást, a valós számok halmazát tekintjük alaphalmaznak. Ha az értelmezési tartomány minden elemére igaz lesz az egyenlet, akkor azt mondjuk, hogy az az egyenlet azonosság. Ha egyetlen értelmezési tartománybeli elemre sem igaz az egyenlet, akkor az egyenletnek nincs megoldása. Egy másik megközelítés szerint az egyenlet mindkét oldala egy-egy függvény hozzárendelési szabálya. Az egyenlet megoldása során pedig azokat az értelmezéstartománybeli -eket keressük, amelyekre a két függvény felvett függvényértéke megegyezik. Amennyiben grafikus úton oldjuk meg az egyenletet, a két függvény metszéspontjának vagy metszéspontjainak koordinátája lesz a keresett megoldás. Melyek a másodfokú egyenletek, és hogyan oldjuk meg őket? A másodfokú egyenletek kanonikus, vagy nullára rendezett alakja: ax2 + bx + c = 0 alakú, ahol a, b és c valós paraméterek. Ők az úgynevezett együtthatók, x pedig a változó. Az a értéke nem lehet 0, hiszen akkor nem lenne x2 -es tag, tehát az egyenlet nem lenne másodfokú. Tétel: ax2 + bx + c = 0 alakú, (a nem 0) másodfokú egyenlet megoldásait az x1,2 =…. (másodfokú egyenlet megoldóképlete) képlettel kaphatjuk meg. A bizonyítás lépéseit a videón láthatod. A másodfokú egyenlet megoldásainak a száma a diszkriminánstól függ. A diszkrimináns a megoldóképletben a gyök alatt látható kifejezés. Ha D < 0, nincs valós gyök, ha D = 0, két egybeeső valós gyök van, ha D > 0, két különböző valós gyök van. Feladat: x2 + 6x + 8 = 0 egyenletet megoldjuk a megoldóképlettel. Hogyan kell megoldani paraméteres másodfokú egyenleteket? Paraméteres másodfokú egyenletek esetén gyakran a paramétert a gyökök számára vagy tulajdonságára megadott adat alapján kell meghatározni. Példa: px2 + 4x + p = 0 egyenletben p a paraméter, x az ismeretlen. Ha pl. az a kérdés, hogy a p paraméter milyen értékei mellett lesz egy megoldása ennek az egyenletnek, akkor ezt a diszkrimináns vizsgálatával lehet megválaszolni. D = 0 -ból kapunk p-re egy összefüggést, annak a megoldásait kell keresni. Gyökök és együtthatók közötti összefüggések felírása, gyöktényezős alak, Viete-formulák. Ha az ax2 + bx + c = 0 másodfokú egyenletnek létezik valós gyöke, akkor a másodfokú kifejezés elsőfokú tényezők szorzatára bontható a gyöktényezős alak segítségével. ax2 + bx + c = a ( x - x1 )( x - x2 ) A Viete-formulák a gyökök és együtthatók közt teremtenek kapcsolatot: x1 + x2 = -b/a ; és x1*x2 = c/a A Viete-formulákat és a gyöktényezős alakot is könnyen igazolhatjuk, ha az x1 -re és x2 -re kapott megoldóképletet behelyettesítjük az összefüggésekbe. A Viete-formulák és a gyöktényezős alak is számos feladat megoldását könnyíti meg. Például nem negatív diszkrimináns esetén szorzat alakba tudjuk írni a másodfokú számlálót vagy nevezőt, így egyszerűsíteni tudunk az azonos tényezőkkel. A másodfokú egyenlőtlenség megoldásának lépései. Ha másodfokú egyenlőtlenséget akarunk megoldani, akkor általában grafikus módon fejezzük be a feladatmegoldást, miután a megoldóképlettel a gyököket meghatároztuk. A másodfokú hozzárendelés képe parabola, a kiszámított gyökök a parabola zérushelyei. Két egybeeső valós gyök esetén a parabola érinti az x tengelyt, ha nincs valós gyök, akkor pedig a másodfokú kifejezés minden x-re pozitív vagy minden x-re negatív értéket vesz fel. A parabola ábrázolása után az egyenlőtlenség megoldásai leolvashatók a garfikonról. Melyek a másodfokúra visszavezethető egyenletek és hogyan oldjunk meg őket? Ha egy kifejezés és ugyanannak a kifejezésnek a négyzete szerepel az egyenletben, akkor az adott kifejezésre érdemes új ismeretlent bevezetünk. Mert így az új ismeretlenre nézve lesz másodfokú az egyenlet vagy az egyenlőtlenség. Ezek az egyenletek, egyenlőtlenségek eredeti formájukban lehetnek például magasabb fokúak, logaritmusosok, trigonometrikusak vagy akár összetettebb algebrai kifejezésre nézve másodfokúak. Megnézünk néhány példát is. Mikor ekvivalens az egyenlet átalakítása? Mikor fordulhat elő gyökvesztés illetve hamis gyök? Miért és mikor kell ellenőrizni az egyenlet megoldását? Nagyon fontos, hogy az egyenletek, egyenlőtlenségek megoldásánál mindig figyeljük, hogy ekvivalens, vagy nem ekvivalens a végrehajtott lépés, vagyis azt, hogy a lépések következtében az újabb és újabb egyenlet ekvivalens-e az előző lépésben szereplő egyenlettel. Két egyenlet akkor ugyanaz, ha értelmezési tartomány a és megoldáshalmaza is ugyanaz. Ekvivalens átalakításokra és nem ekvivalensekre is mutatunk példákat. Ha az átalakítás során megváltozik az egyenlet értelmezési tartománya, gyököt veszíthetünk, de akár hamis gyökök is jöhetnek be. A hamis gyököket lehet kizárni ellenőrzéssel. A másodfokú egyenletek, összefüggések alkalmazására mutatunk példákat a tétel végén.

1. feladatsor megoldásokkal 1. rész
1. feladatsor megoldásokkal 2. rész
A sin x általánosítása
A sin x általánosítása - radián
A sin x általánosítása - szinuszfüggvény
A sin x általánosítása - gyakorlás
Exponenciális egyenletek
Exponenciális egyenletek - gyakorlás
Paraméteres egyenletek; Fizika és kémia feladatok
Paraméteres egyenletek; Fizika és kémia feladatok 2.
Abszolútértékes egyenletek I. rész
Abszolútértékes egyenletek II. rész
Törtes egyenletek
Törtes egyenletek - folytatás
Egyenlőtlenségek megoldása
Egyenlőtlenségek megoldása - folytatás
Egyenletek - gyakorlás I. rész
Egyenletek - gyakorlás II. rész
A cos x általánosítása - gyakorlás
A cos x általánosítása
A cos x általánosítása - koszinuszfüggvény
További egyenletek
További egyenletek II. rész
Azonos átalakítások
Algebrai törtek átalakítása, közös nevezőre hozás
Törtes egyenlőtlenségek
Törtes egyenlőtlenségek 2.
Másodfokú egyenletek - diszkrimináns, megoldóképlet
Másodfokú egyenletek megoldása
Azonos átalakítások (ismétlés)
Azonos átalakítások (ismétlés) 2.