Logaritmikus egyenlet megoldása

Logaritmikus egyenletek azok, amikben szerepel olyan logaritmusos kifejezés, amiben van ismeretlen. Egyszerű logaritmusos egyenleteknél a megoldás menete nagyon hasonlít az elsőfokú egyenlet megoldására. Az a célunk, hogy az egyik oldalon csak az ismeretlent tartalmazó logaritmusos kifejezés álljon, a másik oldalon pedig egy szám (konstans): loga x = c.

Ekkor a logaritmus definíciója szerint x = ac

Egy másik típusa a logaritmusos egyenleteknek olyan alakra hozható, ahol mindkét oldalon az ismeretlen egy-egy logaritmusos kifejezése áll. pl: lg (2x+3) = lg 7

logaritmus megoldás

Vannak ennél nehezebb logaritmikus egyenletek. Némelyik megoldásához a logaritmus azonosságait kell alkalmaznunk. ( ← Ebben a rövid szócikbben röviden leírtuk az összes szükséges képletet)

Példák a logartimikus egyenletek gyakorlásához

1. feladat: Oldjuk meg a log subscript 3 open parentheses square root of x plus 1 end root plus 1 close parentheses equals 2 egyenletet, ahol x valós szám és x > -1!

A logaritmus definíciója szerint:

 3 squared equals square root of x plus 1 end root plus 1 divided by negative 1

8 space equals space square root of x plus 1 end root

64 equals x plus 1

63 equals x

2. feladat: Oldjuk meg a következő egyenletet: log subscript 3 open parentheses x squared minus 2 x close parentheses minus log subscript 3 open parentheses 24 close parentheses equals 0

Megoldás: Rendezzük különoldalra a két logaritmusos kifejezést!

log subscript 3 open parentheses x squared minus 2 x close parentheses minus log subscript 3 open parentheses 24 close parentheses equals 0

log subscript 3 open parentheses x squared minus 2 x close parentheses equals log subscript 3 open parentheses 24 close parentheses A log3x függvény szigorú monotonitása miatt a log3 elhagyható.

x squared minus 2 x equals 24

Innentől kezdve ez egy másodfokú egyenlet, amit megoldóképlettel meg lehet oldani. FONTOS! A kapott végeredményt meg kell vizsgálni, hogy eleme-e az értelemezési tartománynak (log3 argumentumában szereplő kifejezésnek pozitívnak kell lennie).

3. feladat (emelt szint): Mekkora x értéke, ha lg (x) = lg (3) + lg (25)

Megoldás: Felhasználjuk az log subscript a open parentheses b times c close parentheses equals log subscript a open parentheses b close parentheses plus log subscript a open parentheses c close parentheses azonosságot, így:

lg (x) = lg (3 · 25) A logaritmusfüggvény szigorú monotonitása miatt lg elhagyható, így:

x = 3 · 25 = 75.

A következő Matek Oázis videókkal tanulhatsz a logaritmikus egyenletek megoldásáról

Logaritmus
Logaritmus alapjai
Logaritmikus egyenletek
Logaritmus felmérő
Másodfokú és egyéb egyenletrendszerek
3. feladatsor
2006. május, II. rész / 16-18. feladat
Másodfokú és egyéb egyenletrendszerek
2007. október, I. rész / 1-7. feladat
2009. okt.: I. rész 1-12. feladat
2010. májusi érettségi feladatsor I. rész
2011. májusi érettségi feladatsor 1-18. feladat
KISOKOS I. rész  (5 témakör)
2. Racionális és irracionális számok...

2. Racionális és irracionális számok...

2. tétel: Racionális és irracionális számok. Műveletek a racionális és irracionális számok halmazán. Közönséges törtek és tizedes törtek. Halmazok számossága. Tanuld meg a racionális és irracionális számok fogalmát, a műveletek tulajdonságait. Segítünk megtanulni, hogyan bizonyítsd be, hogy a gyök 2 irracionális szám, és mit kell elmondanod a tizedestörtekről, törtekről. Mik azok a racionális és irracionális számok? Racionális számoknak azokat a számokat nevezzük, amelyek felírhatók két egész számhányadosaként. Az irracionális számok azok a számok, amelyek nem írhatók fel két egész szám hányadosaként. A valós számok halmaza nem más, mint ennek a két diszjunkt halmaznak az uniója. A valós számok halmaza és a valós számegyenes pontjai közt kölcsönösen egyértelmű hozzárendelés létezik. Ha például a nulla pontnál egységnyi oldalhosszúságú négyzetet szerkesztünk a 0-tól 1-ig tartó szakasz fölé, akkor ennek a négyzetnek az átlója, ami gyök2 hosszúságú, kijelöli a számegyenesen négyzetgyök 2 helyét. Tétel: 2 négyzetgyöke irracionális szám. A tételt indirekt bizonyítási módszerrel bizonyítjuk. Műveletek a racionális és irracionális számok halmazán. A racionális számok halmaza zárt a négy alapműveletre nézve. Ez azt jelenti, hogy két racionális szám összege, különbsége, szorzata és hányadosa is racionális. Természetesen osztás esetén az osztó nem lehet nulla, a 0-val való osztást nem értelmezzük. Mivel a racionális számok esetén létezik közönséges tört alak, ezért elegendő ilyen alakra megnézni a műveleteket. Eredményként mindig racionális számot kapunk, hiszen a kapott tört számlálója is és nevezője is egész szám, mivel az egész számok halmaza is zárt a négy alapműveletre. Két közönséges törtet úgy szorzunk össze, hogy a számlálót a számlálóval, nevezőt pedig a nevezővel szorozzuk. A számláló és a nevező is egész szám lesz, tehát a szorzás eredményeként szintén racionális számot kapunk. Közönséges törttel pedig úgy osztunk, hogy a reciprokával szorzunk. Az előzőekhez hasonlóan most is racionális számot kapunk hányadosként. Milyen tulajdonságai vannak ezeknek a műveleteknek? Az összeadás és a szorzás művelete kommutatív, tehát összeadásnál a tagok, szorzás esetén a tényezők felcserélhetők. Ez a két művelet asszociatív is, tehát csoportosítva is elvégezhetjük őket. A szorzás művelete disztributív az összeadásra (és a kivonásra), tehát egy zárójeles összeg tagjait tagonként is beszorozhatjuk. Milyen tizedes törtek vannak? Melyek a racionális számok közülük? A véges tizedes törteket nagyon könnyű meghatározni két egész szám hányadosaként, hiszen az egészrészt és a törtrészt is fel tudjuk írni közönséges tört alakban. Természetesen így nem mindig kapjuk a legegyszerűbb alakot, azt akkor kapjuk meg, ha egyszerűsítünk a számláló és a nevező legnagyobb közös osztójával. A végtelen szakaszos tizedes törtek szintén átírhatók közönséges tört alakba. Ennek egyszerű, elemi módja is van, és végtelen mértani sorok összegképletének segítségével is meghatározható a közönséges tört alak. A végtelen nem szakaszos tizedes törtek irracionális számok. Vannak olyan irracionális számok, amelyeket kiemelt szerepük miatt betűvel is eljelöltek, ilyen például a vagy az . De irracionális szám az összes olyan egész számnak a négyzetgyöke is, amely nem négyzetszám. Az irracionális számok halmaza a 4 alapműveletre nézve nem zárt. Halmazok számossága. Végesnek mondjuk a halmazt, ha az elemszáma egy természetes számmal megadható. A racionális és az irracionális számok halmazának elemszáma nem adható meg egy természetes számmal, ezért ezek végtelen halmazok. A végtelen elemszámú halmazok esetében megkülönböztetünk megszámlálhatóan végtelen elemszámot és nem megszámlálhatóan végtelen elemszámot. Megszámlálhatóan végtelen az a halmaz, amelynek elemeit valamilyen módon sorba tudjuk rendezni. (Meg tudunk adni egy olyan eljárás, amelyet követve a sorba rendezésnél egyetlen elem sem maradna ki) A racionális számok halmaza megszámlálhatóan végtelen. A Cantor-féle átlós eljárással könnyen sorba rendezhetjük őket. Egy táblázat első sorában a számlálókat, első oszlopában pedig a nevezőket helyezzük el. Előállítjuk az összes lehetséges módon a közönséges törtet. Biztosan szerepelni fog a táblázatban minden közönséges tört, illetve az átlós bejárást követve a sorba rendezés is adódik. Az irracionális számok halmazának elemei nem sorba rendezhetők, nem megszámlálhatóan végtelen ez a halmaz. Az ilyen halmazt kontinuum számosságúnak nevezzük. Ilyen a valós számok halmaza is. A racionális számok és irracionális számok felhasználása. A racionális számok és irracionális számokat már Pitagorasz korában is használták. Említettem, hogy a valós számegyenesen geometriai ismereteket felhasználva ekkor már ismerték helyüket. Építészeti megoldásokban trigonometrikus alakban kifejezett irracionális számokkal is bőven találkozhatunk. De racionális és irracionális számokat kaphatunk másodfokú, trigonometrikus, exponenciális és logaritmusos egyenletek megoldásakor is. Irracionális számok nélkül, pontosan a pi nélkül a kör területéről és kerületéről, forgástestek térfogatáról sem tudnánk beszélni.

Logaritmusos feladatok I.
Logaritmusos feladatok II.
7. Másodfokú egyenletek, egyenlőtlenségek

7. Másodfokú egyenletek, egyenlőtlenségek

7. tétel: Másodfokú egyenletek és egyenlőtlenségek. Másodfokúra visszavezethető egyenletek. Egyenletek ekvivalenciája, gyökvesztés, hamis gyök, ellenőrzés. Megmutatjuk a teljes kidolgozott tételt, úgy, ahogyan a vizsgán elmondhatod. Közben látni fogod, hogy mit érdemes a táblára írni. A videó második felében segítünk, hogy gyorsan meg is tudd tanulni a tételt. Mi az egyenlet, mit jelent az egyenlet alaphalmaza, értelmezési tartománya, illetve az egyenlet megoldásai? Ha két algebrai kifejezést egyenlőségjellel kapcsolunk össze, egyenletet kapunk. Az egyenlet leírásában egy vagy több változó szerepel. Az egyenlet megoldása során a változónak vagy változóknak azokat az értékeit keressük meg, amelyekre az egyenlet igaz logikai értéket vesz fel. Ez(ek) az egyenlet megoldásai vagy gyökei Minden egyenletnek van egy alaphalmaza, és ennek egy részhalmaza az értelmezési tartomány. Az értelmezési tartomány az alaphalmaznak azon legbővebb részhalmaza, amelyen az egyenletben szereplő összes algebrai kifejezés értelmezve van. Amennyiben nem adunk meg mást, a valós számok halmazát tekintjük alaphalmaznak. Ha az értelmezési tartomány minden elemére igaz lesz az egyenlet, akkor azt mondjuk, hogy az az egyenlet azonosság. Ha egyetlen értelmezési tartománybeli elemre sem igaz az egyenlet, akkor az egyenletnek nincs megoldása. Egy másik megközelítés szerint az egyenlet mindkét oldala egy-egy függvény hozzárendelési szabálya. Az egyenlet megoldása során pedig azokat az értelmezéstartománybeli -eket keressük, amelyekre a két függvény felvett függvényértéke megegyezik. Amennyiben grafikus úton oldjuk meg az egyenletet, a két függvény metszéspontjának vagy metszéspontjainak koordinátája lesz a keresett megoldás. Melyek a másodfokú egyenletek, és hogyan oldjuk meg őket? A másodfokú egyenletek kanonikus, vagy nullára rendezett alakja: ax2 + bx + c = 0 alakú, ahol a, b és c valós paraméterek. Ők az úgynevezett együtthatók, x pedig a változó. Az a értéke nem lehet 0, hiszen akkor nem lenne x2 -es tag, tehát az egyenlet nem lenne másodfokú. Tétel: ax2 + bx + c = 0 alakú, (a nem 0) másodfokú egyenlet megoldásait az x1,2 =…. (másodfokú egyenlet megoldóképlete) képlettel kaphatjuk meg. A bizonyítás lépéseit a videón láthatod. A másodfokú egyenlet megoldásainak a száma a diszkriminánstól függ. A diszkrimináns a megoldóképletben a gyök alatt látható kifejezés. Ha D < 0, nincs valós gyök, ha D = 0, két egybeeső valós gyök van, ha D > 0, két különböző valós gyök van. Feladat: x2 + 6x + 8 = 0 egyenletet megoldjuk a megoldóképlettel. Hogyan kell megoldani paraméteres másodfokú egyenleteket? Paraméteres másodfokú egyenletek esetén gyakran a paramétert a gyökök számára vagy tulajdonságára megadott adat alapján kell meghatározni. Példa: px2 + 4x + p = 0 egyenletben p a paraméter, x az ismeretlen. Ha pl. az a kérdés, hogy a p paraméter milyen értékei mellett lesz egy megoldása ennek az egyenletnek, akkor ezt a diszkrimináns vizsgálatával lehet megválaszolni. D = 0 -ból kapunk p-re egy összefüggést, annak a megoldásait kell keresni. Gyökök és együtthatók közötti összefüggések felírása, gyöktényezős alak, Viete-formulák. Ha az ax2 + bx + c = 0 másodfokú egyenletnek létezik valós gyöke, akkor a másodfokú kifejezés elsőfokú tényezők szorzatára bontható a gyöktényezős alak segítségével. ax2 + bx + c = a ( x - x1 )( x - x2 ) A Viete-formulák a gyökök és együtthatók közt teremtenek kapcsolatot: x1 + x2 = -b/a ; és x1*x2 = c/a A Viete-formulákat és a gyöktényezős alakot is könnyen igazolhatjuk, ha az x1 -re és x2 -re kapott megoldóképletet behelyettesítjük az összefüggésekbe. A Viete-formulák és a gyöktényezős alak is számos feladat megoldását könnyíti meg. Például nem negatív diszkrimináns esetén szorzat alakba tudjuk írni a másodfokú számlálót vagy nevezőt, így egyszerűsíteni tudunk az azonos tényezőkkel. A másodfokú egyenlőtlenség megoldásának lépései. Ha másodfokú egyenlőtlenséget akarunk megoldani, akkor általában grafikus módon fejezzük be a feladatmegoldást, miután a megoldóképlettel a gyököket meghatároztuk. A másodfokú hozzárendelés képe parabola, a kiszámított gyökök a parabola zérushelyei. Két egybeeső valós gyök esetén a parabola érinti az x tengelyt, ha nincs valós gyök, akkor pedig a másodfokú kifejezés minden x-re pozitív vagy minden x-re negatív értéket vesz fel. A parabola ábrázolása után az egyenlőtlenség megoldásai leolvashatók a garfikonról. Melyek a másodfokúra visszavezethető egyenletek és hogyan oldjunk meg őket? Ha egy kifejezés és ugyanannak a kifejezésnek a négyzete szerepel az egyenletben, akkor az adott kifejezésre érdemes új ismeretlent bevezetünk. Mert így az új ismeretlenre nézve lesz másodfokú az egyenlet vagy az egyenlőtlenség. Ezek az egyenletek, egyenlőtlenségek eredeti formájukban lehetnek például magasabb fokúak, logaritmusosok, trigonometrikusak vagy akár összetettebb algebrai kifejezésre nézve másodfokúak. Megnézünk néhány példát is. Mikor ekvivalens az egyenlet átalakítása? Mikor fordulhat elő gyökvesztés illetve hamis gyök? Miért és mikor kell ellenőrizni az egyenlet megoldását? Nagyon fontos, hogy az egyenletek, egyenlőtlenségek megoldásánál mindig figyeljük, hogy ekvivalens, vagy nem ekvivalens a végrehajtott lépés, vagyis azt, hogy a lépések következtében az újabb és újabb egyenlet ekvivalens-e az előző lépésben szereplő egyenlettel. Két egyenlet akkor ugyanaz, ha értelmezési tartomány a és megoldáshalmaza is ugyanaz. Ekvivalens átalakításokra és nem ekvivalensekre is mutatunk példákat. Ha az átalakítás során megváltozik az egyenlet értelmezési tartománya, gyököt veszíthetünk, de akár hamis gyökök is jöhetnek be. A hamis gyököket lehet kizárni ellenőrzéssel. A másodfokú egyenletek, összefüggések alkalmazására mutatunk példákat a tétel végén.

6. A logaritmus ...

6. A logaritmus ...

6. tétel: A logaritmus fogalma és azonosságai. Az exponenciális és a logaritmusfüggvény. Az inverzfüggvény. A logaritmus fogalmát definiáljuk, majd a logaritmus műveletének azonosságairól, az exponenciális a és a logaritmusfüggvényről fogunk beszélni, végül a függvények inverzéről, azok képzéséről. A logaritmus definíciója, tulajdonságai. logab az a valós szám, amelyre az a-t emelve b -t kapjuk. a,b > 0, és a nem 1 (Részletesen indokoljuk, hogy miért kellenek ezek a kikötések) Másképpen úgy is mondhatjuk, hogy az logab = c és az ac = b ekvivalens állítások. A 10-es alapú logaritmust lg-vel, a természetes, vagyis e alapú logaritmust ln-nel jelöljük. Melyek a logaritmus azonosságai? A logaritmus műveletének azonosságai közül az első a szorzat logaritmusára vonatkozik: Szorzat logaritmusa a tényezők logaritmusának összege, visszafelé úgy is mondhatjuk, hogy azonos alapú logaritmusokat úgy adunk össze, hogy az argumendumokat összeszorozzuk. A tételt bizonyítjuk is a videón. További logaritmus azonosságok:. Hányados logaritmusa a számláló és a nevező logaritmusának különbsége. Ha pedig egy hatványnak vesszük a logaritmusát, akkor az nem más, mint az alap logaritmusának és a kitevőnek a szorzata. Ilyenkor a kitevőt, mint szorzótényezőt a logaritmus elé írjuk. Egy logaritmusos kifejezést más alapra is átírhatunk, az ismert összefüggés alapján. Ezt az azonosságot is bebizonyítjuk. Mit kell elmondani az exponenciális függvényekről? Exponenciális függvénynek nevezzük azt a valós számok halmazáról leképező függvényt, amely az x-hez az ax -et rendeli, ahol az a egy pozitív valós szám. Ha a függvény grafikonját szeretnénk megrajzolni, akkor két esetet kell megkülönböztetnünk az alaptól függően: Ha az alap 0 és 1 közötti, akkor az ax grafikonja szigorúan monoton csökken, ha pedig 1-nél nagyobb, akkor szigorúan monoton nő. Amennyiben az alap 1, a konstans 1 függvényről van szó. Mindkét esetben az értelmezési tartomány a valós számok halmaza, az értékkészlet pedig a pozitív valós számok halmaza. Közös tulajdonsága az ax típusú exponenciális függvényeknek, hogy grafikonjuk áthalad a ( 0; 1) ponton, hiszen bármely pozitív szám nulladik hatványa 1. Szélsőértékük nincs, felülről nem korlátosak, tehát nem korlátosak. Konvex függvények, zérushelyük nincs. Nem párosak és nem is páratlanok. Ezek a függvények a folytonosság miatt differenciálhatók és integrálhatók is. A logaritmus függvényeknek mi a közük az exponenciális függvényekhez? A logaritmus függvény a megfelelő exponenciális függvény inverze, a pozitív valós számok halmazáról képez le a valós számok halmazára, x-hez annak a alapú logaritmusát rendeli. Ha a logaritmus alapja 1-nél nagyobb szám, akkor a függvény szigorúan monoton nő, ha 0 és 1 közötti szám, akkor szigorúan monoton csökken. Negatív alapot és 1-es alapot nem értelmezünk logaritmus esetén. Értelmezési tartomány a pozitív számok halmaza, értékkészlete a valós számok halmaza. Zérushelyük van x=1-nél. Szélsőértékük nincs, sem alulról, sem felülről nem korlátosak. Ha az alap 1-nél nagyobb, a függvény konkáv, ha 0 és 1 közötti, akkor konvex. Nem párosak és nem is páratlanok. A függvények a folytonosság miatt differenciálhatók és integrálhatók is. Mit jelent az inverz függvény? Az f függvény inverze az f -1 ha az f értelmezési tartományának minden x elemére igaz, hogy f(x) eleme a f -1 értelmezési tartományának és f -1 (f(x)) = x. Ha az f és az f -1 függvények egymásnak inverzei, akkor az f értelmezési tartománya az f -1 értékkészlete, az f értékkészlete azf -1 értelmezési tartománya. Az f és az f -1 akkor grafikonjai tengelyesen tükrösek az y = x egyenletű egyenesre nézve. Megnézünk néhány példát az inverz függvényre a videón. Például inverze egymásnak a négyzetgyök függvény és az x2 függvény a megfelelő értelmezési tartomány mellett, vagy az f(x) = 3x és az 1/3 x is. Algebrai úton általában könnyen megkaphatjuk egy függvény inverzének hozzárendelési szabályát. Kitérünk még arra is, hogy az exponenciális és logaritmusos kifejezésekkel hol találkozhatunk, illetve az exponenciális, logaritmusos egyenletek megoldása milyen hétköznapi, v. műszaki problémák megoldásánál fontos. Említünk matematikatörténeti vonatkozásokat is.