Háromszögek hasonlósága

Két háromszög hasonló, ha van olyan hasonlósági transzformáció, amivel egymásba átvihetők. De mivel ezt túl bonyolult ellenőrizni sok esetben, ezért használjuk a következő feltételeket a hasonlóság eldöntésére: 

Megfogalmazható néhány egyszerű állítás (tétel) az oldalakra és a szögekre vonatkozóan, amik bizonyíthatóan garantálják, hogy két háromszög hasonló legyen.

Két háromszög hasonló, ha ...

1. ... szögeik páronként megegyeznek (elég, ha két szögük).

2. ... megfelelő oldalaik aránya egyenlő.

3. ... 2-2 oldal aránya és az általuk közbezárt szög megegyezik.

4. ... 2-2 oldal aránya és a nagyobikkal szemközti szög megegyezik.

hasonló háromszögek

Példa a háromszögek hasonlóságának megértéséhez

Feladat: Egy háromszög oldalai a = 7 cm, b = 9 cm, c = 10 cm hosszúak. Ehhez a háromszöghöz hasonló háromszög leghosszabb oldala c' = 32 cm. Milyen hosszú a másik két oldal ebben a háromszögben?

Megoldás: A hasonlóság aránya: lambda equals 32 over 10 equals 3 comma 2 (ezt úgy kaptuk meg, hogy a leghosszabb oldalakat elosztottuk egymással)

Ezzel a hasonlósági aránnyal megszorozva a többi oldal hosszát, megkapjuk a hasonló háromszög másik két oldalát (hiszen, ha az egyik oldal 3,2-szer hosszabb, akkor az összes többi is).

a apostrophe equals 3 comma 2 times 7 equals 22 comma 4 space c m

b apostrophe equals 3 comma 2 times 12 equals 38 comma 4 space c m

A következő Matek Oázis videókkal tanulhatsz a háromszögek hasonlóságáról

Háromszögek hasonlósága
Hasonló síkidomok, testek, további tételek
Hasonló síkidomok, testek, további tételek 2.