Ismétlés nélküli kombináció

Az ismétlés nélküli kombináció azt jelenti, hogy n darab különböző elem közül kiválasztunk k (k ⫹ n) darabot. (Minden elemből csak egy van, és a kiválasztás sorrendje nem számít).

Ezt hívjuk n elem k-ad osztályú ismétlés nélküli kombinációjának. Ezeknek a száma összesen: C subscript n superscript k equals open parentheses table row n row k end table close parentheses equals fraction numerator n factorial over denominator k factorial times left parenthesis n minus k right parenthesis factorial end fraction

Vagyis pl. ha 9 tanuló közül 3-at akarunk kiválasztani (pl. egy csapatba), akkor ezt   open parentheses table row 9 row 3 end table close parentheses equals fraction numerator 9 factorial over denominator 3 factorial times left parenthesis 9 minus 3 right parenthesis factorial end fraction   - féleképpen tehetjük meg.

Példa az ismétlés nélküli kombináció megértéséhez

Feladat: 32 lapos magyar kártyából kihúzunk 8 lapot. Hányféleképp tehetjük ezt meg?

Megoldás: 32 lap van, mindegyik különböző. Az a kérdés, hányféleképp tudunk kihúzni közülük nyolcat. A feladat szövege alapján egyértelmű, hogy nem számít a sorrend (különben az lett volna a kérdés, hogy hányféle sorrendben tudunk kihúzni 8 lapot), ezért ismétlés nélküli kombinációt használunk. 32 elemből 8-at éppen  open parentheses table row 32 row 8 end table close parentheses féleképpen tudunk kiválasztani.

A kövekező Matek Oázis videókkal tanulhatsz az ismétlés nélküli kombinációról

23. Kombinációk, binom. tétel...

23. Kombinációk, binom. tétel...

23. tétel: Kombinációk. Binomiális tétel, a Pascal-háromszög. A valószínűség kiszámításának kombinatorikus modellje. A hipergeometrikus eloszlás. A tételt kifejtve hallani fogod a videón, és közben megmutatjuk, mit érdemes a táblára írnod az emelt szintű szóbeli felelésnél. A tétel a témája a kombinatorika, és a valószínűségszámítás. Ezek véletlen tömegjelenségek törvényszerűségeivel foglalkoznak. Mik azok a kombinációk, és hogyan lehet kiszámolni őket? n elem k-ad osztályú ismétléses kombinációi: Legyen n egymástól különböző elemünk. Ha ezekből k darabot kiválasztunk minden lehetséges módon úgy, hogy a kiválasztott elemek sorrendjére nem vagyunk tekintettel, akkor n elem k-ad osztályú ismétléses kombinációit kapjuk. Azt a tételt bizonyítjuk, hogy az n elem k-ad osztályú ismétlés nélküli kombinációinak a számát az n alatt a k binomiális együttható adja meg. A binomiális együtthatók kiszámításának a módját is megnézzük a videón, és részletezzük a bizonyítást. Az ismétléses kombináció definíciója így szól: Ha n különböző elemből kell k db-ot kiválasztani úgy, hogy a kiválasztás sorrendje nem számít, és a már kiválasztott elemeket újra kiválaszthatjuk, akkor n elem k-ad osztályú ismétléses kombinációját kapjuk. Tétel mondja ki ezek számát, ez pedig éppen n+k-1 alatt a k. Miről szól a binomiális tétel? Egy kéttagú összeg hatványozására ad összefüggést a binomiális tétel: egy kéttagú összeget úgy is n-edik hatványra emelhetünk, hogy összeadjuk a két tag összes olyan hatványának szorzatát, melyben a hatványok kitevőinek összege a kéttagú összeg kitevője, azaz n. Ezt megszorozzuk egy binomiális együtthatóval, mégpedig a Pascal-háromszög n-edik sorának annyiadik elemével, ahányadaik hatványon az első tag áll a szorzatokban Fontos megemlíteni, hogy a Pascal-háromszögben a sorok és a sorok elemeinek számozását is a 0-tól kezdjük. Milyen tulajdonságai vannak a binomiális együtthatóknak? A binomiális együttható két tulajdonságát ismertetem most: Mivel 0! definíció szerint 1-el egyenlő, ezért n alatt a 0 és n alatt az n is 1-gyel egy. A második tulajdonság, hogy az n elem közül k darabot és n-k darabot is ugyanannyi-féleképpen lehet kiválasztani. Tehát n alatt a k és n alatt az n-k egyenlők. Az eddig ismertetett definíciók és tételek segítségével megoldhatunk olyan kiválasztási problémákat, mint például hogy hányféleképp lehet kitölteni egy ötöslottó szelvényt. Vagy például ki tudjuk számolni, hogy egy n elemű halmaznak hány darab k elemű részhalmaza van. Mi a Pascal háromszög? Hogyan számíthatjuk ki az elemeit? A Pascal háromszög lényegében a binomiális együtthatók háromszög alakban való elrendezése. Ahogy már említettem a sorok számozása nullával kezdődik. A páros számú és páratlan számú sorokban a számok el vannak csúsztatva egymáshoz képest. A háromszög felírása nem nehéz, az első sorba csupán egy egyest kell írni. A következő sorok felírásánál a szabály a következő: az új számot úgy kapjuk meg, ha összeadjuk a felette balra és felette jobbra található két számot. Az n. sor k. elemének kiszámítására a képletet a háromszög névadója, a francia matematikus Pascal adta meg. A Pascal háromszög n-edik sorában a kéttagú összeg n-edik hatványának együtthatói, azaz a binomiális együtthatók állnak. Mit jelent a valószínűségszámítás kombinatorikai modellje? . A valószínűségszámítás axiómái: 1.) Tetszőleges A esemény valószínűsége nagyobb vagy egyenlő mint 0 és kisebb vagy egyenlő, mint 1. 2.) Biztos esemény valószínűsége 1, lehetetlen esemény valószínűsége 0. 3.) Ha A és B egymást kizáró események, akkor a valószínűség így is számolható: P(A+B) = P(A) + P(B) A esemény valószínűsége és A esemény komplementerének a valószínűsége együtt 1-el egyenlő. Mi a hipergeometrikus eloszlás és hogyan számolhatjuk ki? Most áttérnék a diszkrét eloszlásokon belül a hipergeometrikus eloszláshoz. Ehhez definiáljuk először a valószínűségi változót, majd a hipergeometrikus eloszlást, és elmondjuk annak jellemzőit, és megmutatjuk a kiszámításának módját. A hipergeometrikus eloszlás várható értékét is felírjuk. Matematikatörténeti vonatkozásokra is kitérünk a tétel kifejtése közben.