Megmutatjuk, mik a logikában az állítások, és hogyan kell tagadni az állítást. Ez a negáció művelete. Megismerkedünk a művelet igazságtáblájával.
Ha két logikai állítást az "és" illetve a "vagy" kötőszóval kapcsolunk össze, egy új állítást kapunk. Megnézzük ezeknek az új állításoknak az igazságtábláját. Kitérünk arra is, hogy a "kizáró vagy" miben különbözik a "megengedő vagy"-tól. Feladatokat oldunk meg logikai állításokkal.
A "ha A, akkor B" típusú állításokat, vagyis ha az A állításból következik a B állítás, ezt implikációnak nevezzük. Ez is egy logikai művelet a két állítással, fel tudjuk írni az igazságtábláját. Ilyenkor az A állítás elégséges feltétele a B-nek, B pedig szükséges feltétele az A-nak.
Az implikációk, tehát a "ha A, akkor B" típusú állítások megfordítása: "ha B, akkor A". Az implikációk megfordítása nem feltétlenül igaz. Azokat az implikációkat, amiknek a megfordítása is igaz, megfordítható állításoknak nevezzük. Ilyenkor A szükséges és elégséges feltétele a B-nek (és fordítva is)
Mindez a videón meglátod, nem is olyan bonyolult :)
Nehéz év vár rád
A legnehezebb matek-anyagokkal kell megbirkóznod 11. osztályban. Logaritmus, szinusz-koszinusz és még a koordinátageometria is ebbe az évbe van belesűrítve. Érdemes tehát felkészülni, gyakorolni, rendbe tenni az alapokat.
Meggyűlt a bajod a matekkal? Lehet, hogy általánosból hoztál olyan hiányosságokat, amik most visszaütnek, de az is lehet, hogy nehezen alkalmazkodsz az új tanárhoz. Ne aggódj, ez a matek is megtanulható!